Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond
نویسندگان
چکیده
In the classical game of Cops and Robbers on graphs, the capture time is defined by the least number of moves needed to catch all robbers with the smallest amount of cops that suffice. While the case of one cop and one robber is well understood, it is an open question how long it takes for multiple cops to catch multiple robbers. We show that capturing ` ∈ O (n) robbers can take Ω (` · n) time, inducing a capture time of up to Ω ( n ) . For the case of one cop, our results are asymptotically optimal. Furthermore, we consider the case of a superlinear amount of robbers, where we show a capture time of Ω ( n · log (`/n) ) .
منابع مشابه
Solving the Single Machine Problem with Quadratic Earliness and Tardiness Penalties
Nowadays, scheduling problems have a considerable application in production and service systems. In this paper, we consider the scheduling of n jobs on a single machine assuming no machine idleness, non-preemptive jobs and equal process times. In many of previous researches, because of the delivery dalays and holding costs, earliness and tardiness penalties emerge in the form of linear combin...
متن کاملDetermining the Optimal Value Bounds of the Objective Function in Interval Quadratic Programming Problem with Unrestricted Variables in Sign
In the most real-world applications, the parameters of the problem are not well understood. This is caused the problem data to be uncertain and indicated with intervals. Interval mathematical models include interval linear programming and interval nonlinear programming problems.A model of interval nonlinear programming problems for decision making based on uncertainty is interval quadratic prog...
متن کاملRobust Quadratic Assignment Problem with Uncertain Locations
We consider a generalization of the classical quadratic assignment problem, where coordinates of locations are uncertain and only upper and lower bounds are known for each coordinate. We develop a mixed integer linear programming model as a robust counterpart of the proposed uncertain model. A key challenge is that, since the uncertain model involves nonlinear objective function of the ...
متن کاملLower bounds for decision problems in imaginary, norm-Euclidean quadratic integer rings
We prove lower bounds for the complexity of deciding several relations in imaginary, normEuclidean quadratic integer rings, where computations are assumed to be relative to a basis of piecewise-linear operations. In particular, we establish lower bounds for deciding coprimality in these rings, which yield lower bounds for gcd computations. In each imaginary, norm-Euclidean quadratic integer rin...
متن کاملHaar Matrix Equations for Solving Time-Variant Linear-Quadratic Optimal Control Problems
In this paper, Haar wavelets are performed for solving continuous time-variant linear-quadratic optimal control problems. Firstly, using necessary conditions for optimality, the problem is changed into a two-boundary value problem (TBVP). Next, Haar wavelets are applied for converting the TBVP, as a system of differential equations, in to a system of matrix algebraic equations...
متن کامل